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Disentangled Capsule Routing for Fast Part-Object
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Abstract— Recently, the Part-Object Relational (POR) saliency
underpinned by the Capsule Network (CapsNet) has been demon-
strated to be an effective modeling mechanism to improve the
saliency detection accuracy. However, it is widely known that the
current capsule routing operations have huge computational com-
plexity, which seriously limited the usability of the POR saliency
models in real-time applications. To this end, this paper takes an
early step towards a fast POR saliency inference by proposing
a novel disentangled part-object relational network. Concretely,
we disentangle horizontal routing and vertical routing from the
original omnidirectional capsule routing, thus generating Dis-
entangled Capsule Routing (DCR). This mechanism enjoys two
advantages. On one hand, DCR that disentangles orthogonal 1D
(i.e., vertical and horizontal) routing greatly reduces parameters
and routing complexity, resulting in much faster inference than
omnidirectional 2D routing adopted by existing CapsNets. On the
other hand, thanks to the light POR cues explored by DCR,
we could conveniently integrate the part-object routing process
to different feature layers in CNN, rather than just applying it to
the small-scaled one as in previous works. This helps to increase
saliency inference accuracy. Compared to previous POR saliency
detectors, DPORTNet infers visual saliency (5 ∼ 9) × faster, and
is more accurate. DPORTNet is available under the open-source
license at https://github.com/liuyi1989/DCR.

Index Terms— Salient object detection, part-object relation-
ship, capsule network, disentangled capsule routing, multi-level
information integration.

I. INTRODUCTION

THE task of salient object detection is committed to
imitating the human innate ability to identify the most
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attractive regions or objects from an image scene. Due to its
potential to localize the visually meaningful regions in a scene,
it can serve as a preprocessing step to improve the computa-
tional efficiency for a wide range of vision tasks, including
segmentation [1], [2], image fusion [3], image retrieval [4],
object recognition [5], etc.

The research of salient object detection stems from Liu’s
work [6], where visual saliency detection was considered a
binary segmentation problem. Since then, a wide range of
works [7] have been proposed to solve this problem based on
hand-crafted features, e.g., color, texture, etc. These methods,
however, encountered a performance bottleneck due to the
limited representation ability of hand-crafted features. Thanks
to the emergence of deep learning, especially Convolutional
Neural Networks (CNNs), the performance of salient object
detection approaches has been improved substantially [8]
in the past few years. Concretely, CNN-based approaches
attempt to learn rich distinguishable features to highlight those
high-contrast regions in an image, which are assembled to
make up the entire saliency map. However, the CNN-based
methods may often end up with incomplete segmentation of
the salient object because of an underlying mechanism that
the saliency of each image region is computed separately.
To solve this problem, [9] and [10] proposed the idea of
Part-Object Relational (POR) visual saliency by imposing the
POR property to the task of salient object detection, which
was implemented by the Capsule Network (CapsNet) [11].

Nonetheless, the preliminary attempts of POR saliency [9],
[10] build POR cues exploration upon omnidirectional 2D
routing, i.e., each capsule must be routed into all other capsules
across the image scale, which has two limitations. First, this
omnidirectional routing comes at the cost of having a large
number of network parameters and heavy routing complex-
ity, both slowing down the saliency inference dramatically.
As shown in Fig. 1, TSPOANet [9] and TSPORTNet [10]
appear to have a speed of 3fps, which is inapplicable to
real-time scenarios.1 Secondly, the complex omnidirectional
routing limits the POR cues exploration to the small-scaled
feature layer, thus leading to inaccurate saliency prediction
in complex scenes. As seen in Fig. 1, TSPOANet [9] and
TSPORTNet [10] do not achieve satisfactory Fβ values due
to the omnidirectional 2D routing. Apparently, these two
limitations arise from omnidirectional 2D routing that has to
compromise speed, accuracy, and simplicity. Visually in Fig. 2,
the previous POR saliency methods, i.e., TSPOANet [9] and

1Usually the real-time requirement is 24 fps.
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Fig. 1. Performance and speed for different POR saliency methods on
four benchmarks. The input image of TSPOANet [9], TSPORTNet [10],
and proposed “DPORTNet” is cropped into 352 × 352. “DPORTNetv1” is a
modified version of DPORTNet by cropping the input image into 176 × 176.

TSPORTNet [10], sometimes add noise to the saliency maps
in complex scenes. Particularly, the second row of Fig. 2
shows that the complicated scene fools TSPOANet [9] and
TSPORTNet [10].

In this paper, we streamline the omnidirectional capsule
routing for state-of-the-art CapNet-based saliency detectors
and propose a Disentangled Part-Object Relational Network
(DPORTNet) for fast POR saliency inference. Our main
innovation lies in the proposed Disentangled Capsule Rout-
ing (DCR) towards fast POR cues exploration. Specifically,
we disentangle vertical and horizontal primary capsules from
the original full-resolution capsule maps for capsule routing.
This way allows a vertical 1D routing and a horizontal 1D
routing to replace the original omnidirectional 2D routing
to explore the part-object relationships of the capsule nodes.
On top of that, the obtained orthogonal (vertical and hor-
izontal) capsules are entangled by matrix multiplication to
restore the full-resolution capsule matrix. This mechanism
brings two advantages. First, as shown in Fig. 3, DCR enables
orthogonal routing, instead of omnidirectional routing adopted
in existing CapsNets, which greatly reduces parameters and
routing complexity. In doing so, we can significantly speed up
saliency inference. It can be seen in Fig. 1, our model, i.e.,
DPORTNet/DPORTNetv1 achieves much faster fps compared
with TSPOANet [9] and TSPORTNet [10]. Secondly, because
of the lightweight POR cues explored by DCR, we can conve-
niently apply the part-object routing process to multiple feature
layers in CNN, rather than just small-scaled feature layers as
in previous works [9], [10], which leads to better saliency
prediction. This can be verified in Fig. 1, where our model,
i.e., DPORTNet/DPORTNetv1 surpasses TSPOANet [9] and
TSPORTNet in terms of Fβ . Besides, it can be seen from
Fig. 2 that our method can detect the accurate salient object,
compared with TSPOANet [9] and TSPORTNet [10]. Also,
experiments on four benchmarks show that the proposed POR
saliency method is superior to the state-of-the-art methods.

To sum up, the contributions of this paper are as follows:
(1) We design a fast capsule routing algorithm, i.e., DCR,

by involving disentangled representation for CapsNet towards
fast POR cues exploration. To the best of our knowledge,

Fig. 2. Visual illustration for different POR saliency detectors. Our method
can detect the accurate salient object, compared with TSPOANet [9] and
TSPORTNet [10].

Fig. 3. Illustration for DCR. The disentanglement produces orthogonal 1D
(vertical and horizontal) capsule routing from the omnidirectional 2D capsule
routing. On top of that, two 1D capsule routing results are entangled to the
2D capsules.

this is the first attempt to adopt disentangled representation
to CapsNet.

(2) On top of DCR, we design a POR saliency network,
i.e., DPORTNet, which utilizes DCR in multiple layers to
learn multi-level POR cues for saliency prediction. In other
words, the proposed simple DCR routing algorithm enables
multi-level POR cues exploration, which is absent in the exist-
ing CapsNet-based POR saliency detection methods because
of their heavy routing algorithms.
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This paper is organized as follows. Sec. II reviews the
related references to our work. Sec. III describes the details of
the proposed DCR algorithm. Sec. IV designs a fast part-object
relational saliency network using DCR. Sec. V carries out
abundant experiments and analyses to understand our method.
Sec. VI concludes the paper.

II. RELATED WORK

In this section, we will review references related to our
work, including salient object detection, CapsNet, and disen-
tangled representation.

A. CNNs for Salient Object Detection

To date, a large number of works have been proposed
for the task of salient object detection. Hand-crafted features
dominate early salient object detectors, for which a com-
prehensive review can be found in [7]. The emergence of
deep learning, especially CNNs, has improved the performance
substantially [12], [13], [14], [15]. Here, we focus on the
CNN-based salient object detectors that are most related to
our method.

The preliminary study simply adopts CNNs for salient
object detection. For example, Li et al. [12] learned multi-scale
features via CNNs for salient object detection. Gupta et al. [16]
extracted adjacent-layer features at one resolution for saliency
prediction. Wang et al. [17] designed a salient object detec-
tion architecture via local estimation and global search.
These works were mostly implemented using the fully con-
nected networks and thereby demanded many resources. Later,
this problem was settled by adopting the fully convolu-
tional network [18] for salient object detection. For exam-
ple, Liu et al. [19] involved global prediction and hierarchical
refinement to detect the salient object. In view of differ-
ent semantics captured by different stages of CNN features,
many researchers attempted to integrate multi-level features
for saliency prediction [20], [21]. For instance, multi-level
features were integrated into multiple scales for salient object
detection [20]. Ma et al. [22] aggregated adjacent features
layer by layer to fuse important details and semantics and
discard interference information. Besides, context plays a vital
role in deep understanding of saliency detection [23], [24].
For example, Liu et al. [23] proposed a contextual informa-
tion guidance strategy for multi-level information integration
towards salient object detection. Gupta et al. [25] proposed a
gate-based context extraction module to emphasize invariance
features for different scales of visual patterns. Siris et al. [26]
exploited the semantic scene contexts to learn the salient
objects from the scene. Zhao et al. [27] designed three com-
plementary branches for saliency detection, including semantic
path, spatial path, and boundary path. Li et al. [28] utilized
a purificatory mechanism to find the salient objects using a
structural similarity loss to model the region-level relationships
for saliency calibration. Yang et al. [29] proposed a progressive
self-guided loss function to train the salient object detection
network. More salient object techniques can be found in [30].
Xu et al. [31] simulated the human biological mechanism
of globally located and locally segmenting salient objects.

Tang et al. [32] solved the problem of high-quality salient
object detection by designing a low-resolution saliency clas-
sification network and a high-resolution refinement network.

B. CapsNets for Part-Object Relational Salient Object
Detection

The concept of capsule was developed in [33]. A capsule
contains a group of neurons to represent the instantiation
parameters of the entity, e.g., pose, deformation, texture,
etc. Sabour et al. [34] implemented a vector CapsNet via
representing a capsule as a vector and designing a dynamic
routing algorithm. Hinton et al. [11] improved the idea via
a matrix CapsNet, which was achieved by encapsulating a
capsule as a pose matrix and an activation value, and designing
a robust Expectation-Maximization (EM) routing algorithm.
The pavement of CapsNet continued with the development of
a stacked capsule autoencoder in an unsupervised manner [35].
Besides, many variants have been proposed to enhance Cap-
sNet [36], [37], [38], [39].

In view of the advances of CapsNet, it has been applied
to many computer vision tasks, e.g., video object segmen-
tation [40], multi-label classification [41], object segmenta-
tion [42], etc. CapsNet has also been well studied for salient
object detection [9], [10], [43]. Liu et al. [9] introduced the
POR property implemented by CapsNet for salient object
detection. Concretely, a two-stream strategy was developed
in [9] to implement CapsNet, which could reduce the computa-
tional cost and parameters, and also noisy capsule assignments
to some extent. In their extended version [10], a correlation-
aware routing algorithm was proposed to speed up the training
procedure and increasing the accuracy of part-object relation-
ships, which resulted in a further performance enhancement.

The difference between our work and CapsNet can be
explained as follows. Due to the disentangled representation,
our DCR implements orthogonal 1D routing, instead of omni-
directional 2D routing adopted by the existing CapsNets. This
implementation greatly reduces the network parameters and
routing complexity, resulting in faster POR cues exploration
for efficient saliency inference, as can be verified in Fig. 1.

Besides, the difference between our method and the existing
POR saliency methods [9], [10] lies in two folds. First,
our orthogonal 1D routing greatly speeds up the POR cues
exploration, compared to omnidirectional 2D routing in [9]
and [10], resulting in faster saliency inference. Secondly, the
existing POR saliency methods [9], [10] explore single-scale
(i.e., 44 × 44) POR cues for saliency prediction, while our
method explores multi-scale (i.e., 88×88, 44×44, and 22×22)
POR cues, which help capture richer POR cues for better
saliency prediction.

C. Disentangled Representation

The goal of disentangled representation is to extract
explanatory factors from diverse data variation for gener-
ating a meaningful representation, which has been studied
for various tasks. For example, Chio et al. [44] disentan-
gled 1D-discriminative and 1D-excluded factors from visible-
thermal images. The former was used for cross-modality
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Fig. 4. Primary capsule disentanglement. The pose and activation are disentangled into horizontal pose and activation ((a)) and vertical pose and activation
((b)), respectively, which are further fed into the EM routing algorithm for capsules routing. W , H , and C represent the width, height, and capsule type number,
respectively. WDis−h and WDis−v are learned weight matrices. ⊗ is the operation of matrix multiplication. P ∈ RW×H×C×DP and A ∈ RW×H×C×DA

represent the pose matrix and the activation of the capsule maps. DP = 16 and DA = 1. The superscript l is the layer index.

matching. Yin et al. [45] disentangled semantics to fulfill
the high-level semantic consistency and low-level semantic
diversity requirements for text-to-image generation. For pose
exstimation, Li et al. [46] disentangled the pose to predict
rotation and translation separately. Liu et al. [47] disentangled
shape features from 2D images during 3D face shapes recon-
struction for face recognition. Gilbert et al. [48] disentangled
image structure and style during patch search and selection
for style-aware image completion. Guen and Thome [49]
disentangled physical dynamics to achieve unsupervised video
prediction.

In this paper, we extend disentangled representation to solve
the problem of POR saliency. Specifically, we disentangle
orthogonal 1D routing from omnidirectional 2D routing for
the sake of exploring better POR cues for saliency inference.

III. THE DISENTANGLED CAPSULE ROUTING

In this section, we illustrate the proposed Disentangled
Capsule Routing (DCR), which is designed for fast part-object
relational cues exploration. It consists of two phases, i.e.,
primary capsule disentanglement and capsule matrix entan-
glement.

A. Primary Capsule Disentanglement

Primary capsule disentanglement is designed to disentangle
vertical and horizontal capsules from the 2D full-resolution

primary capsule maps. Fig. 4 shows the details of the disen-
tanglement process, which is composed of two streams along
the vertical and horizontal directions, respectively.

Suppose P ∈ RW×H×C×DP and A ∈ RW×H×C×DA are the
pose matrix and the activation of the capsule maps, respec-
tively, where W , H , and C represent the width, height, and
capsule type number, respectively. D= {DP = 16, DA = 1} is
the dimension of the pose matrix and the activation. Fig. 4
details the disentanglement process, which will be illustrated
as follows. The disentanglement pipeline consists of two main
procedures, including horizontal/vertical disentanglement for
capsules and horizontal/vertical votes computation.

Step 1: Horizontal/vertical disentanglement for capsules.
As shown in Fig. 4, the straight pipeline of the horizontal
disentanglement can be given as

Pl/Al
∈ ℜ

W×H×C×D T
→ ℜ

D×C×W×H ⊛
→ ℜ

D×C×W×1

T
→ ℜ

W×1×C×D R
→ Pl

Dis−h/Al
Dis−h ∈ ℜ

(W×1)×C×D, (1)

where Pl and Al represents the pose matrix and the activation
values of capsules in layer l, respectively, and / means “or”.
T and R represent the operations of transpose and reshape,
respectively. ⊛ means a convolution operation with the kernel
size of 1 × 1. The superscript l is the layer index. D can be
taken as DP = 16 and DA = 1 to disentangle the pose matrix
Pl

Dis−h and the activation values Al
Dis−h of the capsules in

layer l, respectively. It is noted that the sigmoid function is
used for Al

Dis−h .

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on November 05,2022 at 07:33:16 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: DISENTANGLED CAPSULE ROUTING FOR FAST PART-OBJECT RELATIONAL SALIENCY 6723

Similarly, as shown in Fig. 4, the straight pipeline of the
vertical disentanglement can be given as

Pl/Al
∈ ℜ

W×H×C×D T
→ ℜ

D×C×H×W ⊛
→ ℜ

D×C×H×1

T
→ ℜ

1×H×C×D R
→ Pl

Dis−v/Al
Dis−v ∈ ℜ

(1×H)×C×D, (2)

Also, the Sigmoid function is adopted to activate Al
Dis−v .

Step 2: Horizontal/vertical votes computation. The vote
matrix can be computed by multiplying the pose matrix and
a learned weight matrix, i.e.,

Vl
Dis−h ∈ ℜ

(W×1)×C×
√

DP ×
√

DP
= P̃l

Dis−h × Wl
Dis−h, (3)

Vl
Dis−v ∈ ℜ

(1×H)×C×
√

DP ×
√

DP
= P̃l

Dis−v × Wl
Dis−v, (4)

where, ˜P l
Dis−h ∈ ℜ

(W×1)×C×
√

DP ×
√

DP and ˜P l
Dis−v ∈

ℜ
(1×W )×C×

√
DP ×

√
DP are obtained by reshaping Pl

Dis−h

and Pl
Dis−v , respectively. WDis−hℜ

(W×1)×C×
√

DP ×
√

DP and

WDis−vℜ
(1×W )×C×

√
DP ×

√
DP are learned weight matrices.

(VDis−h, ADis−h) and (VDis−v, ADis−v) are fed into the
Expectation Maximization (EM) routing algorithm [11] for
horizontal routing and vertical routing to explore horizontal
and vertical POR cues, respectively, i.e., (Pl+1

Dis−h, Al+1
Dis−h) and

(Pl+1
Dis−v, Al+1

Dis−v).

B. Capsule Matrix Entanglement

Capsule matrix entanglement is designed to recover the
full-resolution pose matrix from horizontal and vertical pose
matrices (Pl+1

Dis−h and Pl+1
Dis−v), and recover the full-resolution

activation from horizontal and vertical activations (Al+1
Dis−h

and Al+1
Dis−v). Fig. 5 details the process of the capsule matrix

entanglement, which consists of two streams in terms of pose
matrix and activation.

As shown in Fig. 5(a) and (b), the entanglement is achieved
by multiplying vertical and horizontal semantics. Before
the matrix multiplication, dimension matching is necessary.
As shown in Fig. 4(a) and (b), the straight pipeline of
dimension matching for Pl+1

Dis−h and Al+1
Dis−h can be illustrated

as

Pl+1
Dis−h/Al+1

Dis−h ∈ ℜ
(W×1)×C×D R

→ ℜ
W×1×C×D

T
→ P̂l+1

Dis−h /̂Al+1
Dis−h ∈ ℜ

C×D×W×1, (5)

where D can be taken as DP = 16 and DA = 1 for the pose
matrix and the activation, respectively.

Similarly, as shown in Fig. 4(a) and (b), the straight pipeline
of dimension matching for Pl+1

Dis−v and Al+1
Dis−v can be illus-

trated as

Pl+1
Dis−v/Al+1

Dis−v ∈ ℜ
(1×H)×C×D R

→ ℜ
1×H×C×D

T
→ P̂l+1

Dis−v /̂Al+1
Dis−v ∈ ℜ

C×D×1×H . (6)

On top of that, the entangled pose matrix can be computed
by matrix multiplication as

P̂l+1
∈

C×DP×W×H
=ˆP l+1

Dis−h ⊗ˆP l+1
Dis−v. (7)

Algorithm 1 DCR based CapsNet. X Is the Feature Maps
of the Input Image. P∗

∗ and A∗
∗ Are the Pose Matrices and

Activation Values, Respectively. R Is the Reshape Operation

The full-resolution pose matrix Pl+1
∈

W×H×C×DP can be
achieved by reshaping P̂l+1.

Similarly, the entangled activation can be computed by
matrix multiplication as

Âl+1
∈

C×DA×W×H
= Sigmoid

(
Âl+1

Dis−h ⊗ Âl+1
Dis−v

)
, (8)

where Sigmoid (·) means the sigmoid function. The
full-resolution activation Al+1

∈
W×H×C×DA can be achieved

by reshaping Âl+1.
To this end, the capsule maps of layer (l +1), i.e., Pl+1 and

Al+1, can be obtained. Algorithm 1 illustrate the DCR based
CapsNet.

IV. NETWORK ARCHITECTURE FOR SALIENT
OBJECT DETECTION

In this section, we will detail the proposed deep salient
object detection method. Fig. 6 shows the proposed DPORT-
Net architecture for salient object detection, consisting of
two main compositions: backbone feature maps generation
and DCR. Concretely, at each stage, backbone feature maps
are generated by the backbone network and AtrouS Pyramid
Pooling (ASPP) [50]. In addition, backbone feature maps
are fed into DCR for POR cues exploration at the three
deepest stages that contain high-level semantics. Furthermore,
a residual learning module is designed to integrate the contrast
cues of the backbone feature maps and the POR cues by DCR
to attend to the salient regions. Finally, multi-level semantics
are integrated in a deep-to-shallow manner to infer the salient
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Fig. 5. Capsule matrix entanglement. The horizontal and vertical poses are entangled into the 2D capsule pose ((a)). Likewise, the horizontal and vertical
activations are entangled into the 2D capsule activation ((b)). The interpretations of the mathematical symbols can be found in the caption of Fig. 4.

Fig. 6. Proposed salient object detection network architecture, i.e., DPORTNet. The top is the framework of our DPORTNet. The bottom is the framework
of our DCR. W and H represent the width and height of the capsule maps. At the three deeper stages, the backbone network and ASPP [50] are employed to
learn rich backbone feature maps, which are fed into DCR for POR cues exploration. On top of that, a residual learning integrates the contrast cues from the
backbone feature maps and the POR cues from DCR. Finally, multi-level feature maps are integrated in a deep-to-shallow manner to compute the saliency
map.

object. Details of the proposed salient object detector will be
illustrated in the following.

A. Backbone Feature Maps Generation

As shown in Fig. 6, the input image first goes through
five stacked convolutional layers, which are implemented by
Conv1_2, Conv2_2, Conv3_3, Conv4_3, and Conv5_3 of
the pre-trained VGG16 [51] model. Besides, to capture richer
context of the input image, ASPP [50] with multiple dilation

rates (1, 3, 5, 7) is adopted at each stage to generate multi-scale
backbone feature maps, which contain rich context information
under various receptive fields without increasing the kernel
scales.

B. DCR for Part-Object Relational Cues Exploration

In view of the lightweight of DCR, we adopt it to explore
multi-scale POR cues for saliency prediction. Specifically
in Fig. 6, we integrate DCR at three deeper stages that
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contain high-level semantics for sake of multi-scale POR cues
exploration. On top of that, a residual learning combines
contrast cues captured by backbone feature maps and POR
cues explored by DCR, i.e.,

q i
out = q i

in + fDC R

(
q i

in

)
(i = 3, 4, 5), (9)

where q i
in and q i

out are the input features and output features
of DCR at layer i . fDC R represents the DCR operation.

For the shallow two layers with large scales, the backbone
feature maps obtained by ASPP are directly integrated with the
deep part-object relational cues in a deep-to-shallow manner
via concatenation for saliency inference, i.e.,

q i
out = fconv( fcat (q i+1

out , q i
AS P P ), Wconv)(i = 1, 2), (10)

where fconv , fcat , and Wconv represent the operations of
convolution, concatenation, and the parameters of convolution,
respectively.

C. Loss Function

We use the cross-entropy loss function (lce) and the Inter-
section over Union (IoU) loss function (liou) to jointly train
our salient object detection network, i.e., lce + liou . Suppose
B and G are the predicted saliency map and corresponding
ground truth. lce is formulated as

lce (B, G) = −

∑
i

[
Gi log (Bi ) + (1 − Gi ) log (1 − Bi )

]
,

(11)

where i is the pixel index.
liou is defined as

liou (B, G) = 1 −

∑
i

B (i) G (i)∑
i

[B (i) + G (i) − B (i) G (i)]
. (12)

D. Insight Into DCR Induced Saliency

1) Visualization for the DCR Saliency Detector: Fig. 7 visu-
alizes examples for the POR 1D activation maps2 at the third
level. As can be seen from Fig. 7, 1D vertical and horizontal
maps can activate the salient rows and columns, respectively.
They are further entangled by matrix multiplication to produce
a 2D capsule activation map to attend to the salient object. This
also supports the rationality of our DCR, in which 2D routing
can be disentangled into horizontal and vertical directions and
they can be further entangled by matrix multiplication.

2) Difference Between Our Work and CCNet [52]:
CCNet [52] describes a criss-cross attention to extract rich
context for the task of semantic segmentation. Specifically,
CCNet [52] computes an affinity map as the attention map,
which is implemented by multiplying each-position feature
vector of query and the row or column feature vectors of key,
resulting in a criss-cross attention map. Such a mechanism
reduces the parameters and complexity from N 2 to N

√
N ,

where N = H ×W is the spatial dimension. In contrast, we do
not simply separate the row/column information. Instead,

2In this paper, the saliency map is derived from the activation map.

Fig. 7. Visualizations of 1D activation maps at the third level. 1D maps
of 8 types of capsules are stacked together for visualizations. The first two
columns are images and the ground truth, respectively.

we disentangle the input into row vector and column vector.
Specifically, the row/column dimension is treated as the chan-
nel dimension, which is transformed into one dimension via a
convolution. Such a disentanglement mechanism can achieve
column/row feature maps of the input, which are fed into
the capsule routing for column/row capsules assignment to
compute the column/row capsule maps, respectively. By doing
so, the 2D capsule routing can be transformed into two 1D
capsule routing, of which each routing associates rows or
columns together. Usually H = W , and our mechanism
reduces the parameters and complexity from N 2 to N

2 . As a
result of the lower complexity ( N

2 < N
√

N ), our method is
more efficient in terms of computation.

Besides, our disentanglement is essentially different from
the row/column separation with the evidence that our vertical
and horizontal capsule features are not simply the row and
column information. During the disentanglement of vertical
capsule features, it can be found in Fig. 4 that the horizontal
dimension of the 2D capsule features is transposed into
the channel dimension, which is followed by a convolution
to achieve our vertical capsule features. Such a mechanism
disentangles the vertical capsule features instead of simple
row separation. Similarly, our disentanglement of horizontal
capsule features from the 2D capsule features is achieved
by a convolution on the vertical dimension instead of simple
column separation. The disentangled vertical and horizontal
1D inputs are further fed into the capsule routing algo-
rithm for capsule assignments, producing 1D capsule routing
procedures.

V. EXPERIMENT AND ANALYSIS

In this section, we will carry out abundant experiments
and analysis to provide a comprehensive understanding of the
proposed method.

A. Dataset

We evaluate the proposed salient object detection network
on four public benchmarks.
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ECSSD [53] contains 1000 images with complicated struc-
tures, which are collected from the Internet.

HKU-IS [12] consists of 3000 training images and 1447 test
images, which are with multiple disconnected objects.

DUTS [54] contains 10533 training images and 5019 test
images, which are with different scenes and various sizes.

DUT-OMRON [55] has 5168 images with different sizes
and complex structures.

In terms of HKU-IS [12] and DUTS [54], only the test
images are used for evaluations in our experiments.

B. Evaluation Metric

We evaluate the performance of our model as well as
other state-of-the-art methods from both visual and quantita-
tive perspectives. The quantitative metrics include weighted
F-measure (Fβ ) [56], Mean Absolute Error (M AE) [56],
S-measure (Sm) [57], and E-measure (Em) [58]. Given a
continuous saliency map, a binary mask B̂ is achieved by
thresholding the saliency map B. Precision is defined as
Precision =

∣∣∣B̂ ∩ G
∣∣∣/∣∣∣B̂

∣∣∣, and recall is defined as Recall =∣∣∣B̂ ∩ G
∣∣∣/|G|. Then, the PR curve is plotted under different

thresholds.
F-measure is an overall performance indicator, which is

computed by

Fβ =

(
1 + β2) Precision × Recall

β2 Precision + Recall
. (13)

As suggested in [56], β2
= 0.3.

M AE is defined as

M AE =
1

Ŵ × Ĥ

∑
i

|B (i) − G (i)|, (14)

where Ŵ and Ĥ are the width and height of the image,
respectively.

S-measure (Sm) [57] is computed by

Sm = αSo + (1 − α) Sr , (15)

where So and Sr represent the object-aware and region-aware
structure similarities between the prediction and the ground
truth, respectively. α is set to 0.5 [57].

E-measure (Em) [58] combines local pixel values with
the image-level mean value to jointly evaluate the similarity
between the prediction and the ground truth.

C. Implementation Detail

The proposed model is implemented in Tensorflow [59].
To avoid over-fitting caused by training from scratch, the
backbone network is initialized by the five stages of the
pretrained VGG16 model [51], respectively. The other weights
are initialized randomly with a truncated normal (σ = 0.01)
distribution, and the biases are initialized to 0. The Adam
optimizer [60] is used to train our model with an initial
learning rate of 10−5, β1 = 0.9, and β2 = 0.999. The
training dataset of DUTS [54] is used to train our network
with horizontal flipping as the data augmentation technique.

Fig. 8. Ablation visualization for DCR. (a) Images; (b) GT; (c) -DCR;
(d) DPORTNet. DCR enables grabbing/capturing the object wholeness (top
two rows) and suppressing the confused backgrounds around salient objects
(bottom two rows).

D. Ablation Analysis

1) DCR: To verify the effectiveness of the proposed DCR,
we compare the entire model with a baseline, which removes
DCR from the model in Fig. 6. Table I lists the quantitative
values of different metrics for comparison. As shown in
Table I, the involvement of DCR can effectively improve
the performance. Besides, Fig. 8 shows the visual illustration
of the proposed capsule routing. Specifically, as shown in
Fig. 8, DCR enables grabbing/capturing the object wholeness
(as shown in the top two rows of Fig. 8) and suppressing the
confused backgrounds around salient objects (as shown in the
bottom two rows of Fig. 8). These improvements benefit from
the orthogonal POR cues captured by DCR, which help to
detect relevant object parts and learn the object wholeness for
better saliency prediction.

2) Different POR Cues Explorations for Saliency: To take
a thorough study on different POR cues explorations for
POR saliency, we replace the two-stream capsule routing
in TSPOANet [9]3 with our DCR, called TSPOANet-DCR,
to compare with TSPOANet [9]. As shown in Table I, our
DCR can improve the performance of POR saliency, compared
to TSPOANet [9]. Besides, as shown in Fig. 9, compared
to TSPOANet [9], our DCR improves the wholeness of the
salient objects (as shown in the top two rows of Fig. 9) and
background suppression (as shown in the bottom two rows
of Fig. 9). To our best knowledge, capsules are much more
complex than the neurons in conventional CNNs in terms of
the number of parameters. Thus, the current training data may
be sufficient for training CNN-based salient object detection
models but becomes insufficient for training networks based
on CapsNet. Under this circumstance, by reducing the routing
complexity between capsules, our DCR can ease the opti-
mization process of capsule routing, thus making the whole
learning process much easier when training on the current data.

3The existing POR saliency detectors [9], [10] explore POR cues by using
the same capsule routing during the testing stage, i.e., two-stream routing.
Therefore, we select TSPOANet [9] for comparison.
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TABLE I
Fβ , MAE, Sm , AND Em VALUES FOR DIFFERENT ABLATION STUDIES

Fig. 9. Ablation visualization of different POR cues explorations for POR
saliency. (a) Image; (b) GT; (c) TSPOANet [9]; (d) TSPOANet-DCR, which
is implemented by replacing the two-stream capsule routing in TSPOANet [9]
with our DCR.

3) Multi-Scale POR Cues: Unlike the existing
POR saliency methods that explore single-scale POR
cues for saliency prediction, we explore multi-scale POR
cues for saliency inference, which enables learning rich
POR cues with different receptive fields of the input image.
To understand the superiority of the proposed multi-scale
POR cues, we compare our method with TSPOANet-DCR.
As shown in Table I, our method improves the performance
over TSPOANet-DCR that explores single-scale POR cues
like TSPOANet [9]. Besides, as shown in Fig. 10, compared
to the single-scale POR saliency method, i.e., TSPOANet-
DCR, our multi-scale POR cues achieve better background
suppression (as shown in the top row of Fig. 10) and better
object wholeness (as shown in the second row of Fig. 10).
Furthermore, multi-scale POR cues help to detect salient
objects of different sizes (as shown in the bottom two rows
of Fig. 10).

To have a deeper understanding of our multi-scale POR
cues, we compare one-scale (i.e., DPORTNet-OS), two-scale
(i.e., DPORTNet-TS), and three-scale (i.e., DPORTNet) POR
cues for saliency detection. As shown in the fourth block of
Table I, our DPORTNet that extracts three-scale POR cues
achieves superior performance compared to DPORTNet-OS
and DPORTNet-TS. Moreover, as can be seen in Fig. 11,
our three-scale DPORTNet, compared to DPORTNet-OS and

Fig. 10. Ablation visualization for mutli-scale POR cues. (a) Image; (b) GT;
(c) TSPOANet-DCR; (d) DPORTNet. Compared to TSPOANet-DCR, our
DPORTNet achieves better background suppression (top row) and better object
wholeness (the second row). Furthermore, our DPORTNet helps to detect
salient objects of different sizes (bottom two rows).

DPORTNet-TS, can detect the whole salient objects while
suppressing the background (as shown in the first three rows
of Fig. 11), and identify multiple salient objects (as shown in
the last row of Fig. 11), which thanks to the rich POR cues
explored by using DCR at three scales.

4) DCR Vs. Vanilla CapsNet: To better understand the
ability of DCR for POR cues exploration, we compare two
models, including our DPORTNet and DPORTNet-V, which
is a modified version by replacing our DCR with the vanilla
capsule routing at the last stage of ASPP. As shown in
Table I, by comparing DPORTNet and DPORTNet-V, it can
be found that our DPORTNet beats DPORTNet-V on most of
the evaluation metrics. It indicates that the sparse connection
in our DCR is capable of capturing details, compared with
the dense connection of the vanilla capsule routing. Fig. 12
visualizes the detection results. As shown in the first three
rows of Fig. 12, the dense connection of vanilla capsule routing
causes some details lost because of the noise of dense-position
routing. In contrast, our DCR can make up for these lost details
and detect the whole salient objects. As shown in the last row
of Fig. 12, the dense connection of vanilla capsule routing
misses one salient object, which can be identified by our
DCR.
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Fig. 11. Ablation visualization of different-scale DPORTNet. (a) Image;
(b) GT; (c) DPORTNet-OS; (d) DPORTNet-TS; (e) DPORTNet. Compared
to DPORTNet-OS and DPORTNet-TS, our DPORTNet can detect the whole
salient objects while suppressing the background (first three rows), and
identify multiple salient objects (last row), which thanks to the rich POR
cues explored by using DCR at three scales.

Fig. 12. Ablation visualization of DCR vs. vanilla capsule routing. (a) Image;
(b) GT; (c) DPORTNet-V; (d) DPORTNet. DPORTNet-V causes some details
lost and even salient object missed. In contrast, our DPOETNet can tackle
these issues.

TABLE II
INFERENCE TIME OF DIFFERENT POR SALIENCY METHODS. THE
INPUT IMAGE OF CAPSNET, TSPOANET [9], TSPORTNET [10],
TSPOANET-DCR, AND DPORTNET IS CROPPED TO 352 × 352.

DPORTNETV1 IS A MODIFIED VERSION OF DPORTNET
BY CROPPING THE INPUT IMAGE TO 176 × 176

5) Inference Speed of Different POR Saliency: To highlight
the inference speed improvement of our proposed method,
we list the inference time of different POR saliency methods
in Table II. First, we replace the two-stream capsule routing
in TSPOANet [9] with the original capsule routing [11]
(called CapsNet) and the proposed DCR (called TSPOANet-
DCR) for comparisons. As shown in Table II, our DCR
achieves 5× faster inference speed, compared to CapsNet and

Fig. 13. Parameters (top) and FLOPs (bottom) of different POR saliency
methods.

TSPOANet [9]. Secondly, compared with the existing POR
saliency methods, i.e., TSPOANet [9] and TSPORTNet [10],
our method (i.e., DPORTNet and DPORTNetv1) achieves
(5 ∼ 9)× faster inference speed. The speed improvement
benefits from the proposed DCR that disentangles orthogonal
1D routing for fast POR cues exploration.

6) FLOPs of Different Methods: As shown in
Fig. 13(a) and (b), when comparing solely POR saliency
detection approaches, we reduce the number of parameters
by 3.25M, 0.33M, and 2.51M, compared to CapsNet,
TSPOANet [9], and TSPORTNet [10], respectively. Likewise,
DPORTNet reduces FLOPs by 78.68G, 37G, and 106.74G
when comparing with CapsNet, TSPOANet [9], and
TSPORTNet [10], respectively. Overall, such reductions are
quite substantial. We believe this is a significant improvement
towards realizing a fast POR saliency modeling.

E. Comparison With the State-of-the-Art Methods

In this section, we compare our method with 18 state-of-
the-art methods, including 2 POR saliency methods (TSPORT-
Net [10] and TSPOANet [9]) and 16 state-of-the-art saliency
methods (PurNet [28], SCA [26], CIG [23], ITSD [64], SAM-
Net [63], ToHR [65], AFNet [66], BANet [67], JointCRF [68],
NLDF [61], PiCANet [69], BMP [21], Amulet [20], UCF [70],
DLS [71], and ELE [72]).

1) Quantitative Comparison: Table III lists the values of
Fβ , M AE , Sm , and Em of different methods. Altogether, the
proposed approach achieves 10 top-1, 12 top-2, and 14 top-3
places in terms of 16 metrics on four benchmarks. Specifically,
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TABLE III
Fβ , M AE , Sm , AND Em VALUES OF DIFFERENT METHODS. TOP THREE METHODS ARE MARKED BY RED, BLUE, AND GREEN, RESPECTIVELY.

“-” MEANS THAT THE CORRESPONDING AUTHORS DO NOT PROVIDE THE DETECTION RESULTS OF THE DATASET. IN VIEW OF THE FACT THAT
THE COMPARED METHODS USE EITHER VGG16 [51] (e.g., NLDF [61]) OR RESNET50 [62] (e.g., PURNET [28]) AS THE BACKBONE

NETWORKS, WE LIST OUR PERFORMANCE USING THE RESNET50 [62] AND VGG16 [51] AS THE BACKBONE NETWORKS FOR
FAIR COMPARISONS, i.e., DPORTNET-RESNET50 AND DPORTNET-VGG16, RESPECTIVELY

TABLE IV
PARAMETERS, FLOPS, AND SPEED OF SOME GOOD METHODS

Fig. 14. PR curves of some good methods. Our method can achieve competitive performance compared with the other approaches.

our method outperforms the best general saliency method, i.e.,
TSPORTNet [10], which is also the best POR saliency method
and obtains 2 top-1, 7 top-2, and 12 top-3 places. Based on the
above illustrations, we outperform the current state-of-the-art
methods consistently across multiple test sets. Besides, Fig. 14
plots the PR curves on different datasets. Similar to Table III,
as shown in Fig. 14, our method also achieves competitive
performance compared with the other approaches.

2) Visual Comparison: Fig. 15 shows the visual compar-
isons of different methods on various scenes, including large
object, small object, multiple objects, low contrast between
foreground and background, center bias, and complex scenes.
For large objects, our method can detect better object whole-
ness than the other methods. For small objects, we can locate
the small objects and suppress the surrounding backgrounds,
compared to the other methods. For multiple objects, our
model can detect all the salient objects with good object
wholeness and uniformity, while the other methods miss
some object parts and introduce some background noise.
For those objects with low contrast between themselves and
backgrounds, we can identify the salient object from the
misleading surroundings, while the other methods are easily
confused by the similar backgrounds. For those objects with
center biases, we can locate them accurately with good back-
ground suppression, while the other methods mostly introduce

background noise at the center of the image into the saliency
map. For those objects in complex scenes, the compared
methods mostly fail to identify the salient object from the
complicated backgrounds, which can be solved by our model
well. In view of the above illustrations, our method can detect
the salient object well in various scenes.

3) Parameters, FLOPs, and Speed: Table IV illustrates
the parameters, FLOPs, and speed of some good methods.
In Table IV, compared with the POR saliency detectors,
including TSPORTNet [10] and TSPOANet [9], our methods
have fewer parameters, significantly smaller FLOPs, and (5-
9) faster inference speed. Besides, compared with the CNNs
saliency methods, our methods also perform well with respect
to parameters, FLOPs, and speed.

F. Plugging-in DCR for Performance Improvement

Our DCR can be easily plugged into any existing salient
object detectors for further performance improvements by
exploring the part-object relational semantics. To demon-
strate it, we incorporate our DCR into NLDF [61], result-
ing in NLDF-DCR. Table V illustrates the performance of
NLDF [61] and NLDF-DCR. Table V clearly shows that
adding in DCR results in significant improvements on various
datasets in terms of various evaluation metrics. Fig. 16 shows
the visual improvements of plugging-in DCR. Compared with

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on November 05,2022 at 07:33:16 UTC from IEEE Xplore.  Restrictions apply. 



6730 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Fig. 15. Detection results of some good methods. We choose several scenes, including large object, small object, multiple objects, low contrast between
foreground and background, center bias, and complex scenes, to visualize the detection results of different methods. Compared with the other methods, our
model can detect the salient objects under various circumstances with good wholeness and uniformity.

TABLE V
PERFORMANCE IMPROVEMENTS FOR PLUGGING-IN DCR

Fig. 16. Visual illustration for the performance improvements of plugging-in
DCR. (a) Image; (b) GT; (c) NLDF [61]; (d) NLDF-DCR.

NLDF [61], our DCR helps to segment the whole salient
objects (as shown in the first three rows of Fig. 16) while
suppressing the confusing background (as shown in the last
row of Fig. 16).

G. Failure Cases

Fig. 17 displays some failure cases of our saliency detector
on extremely complex scenes. For example, in the images in
the left two columns of Fig. 17, the salient objects are labeled

Fig. 17. Failure cases. From top to bottom: Images, GT, and results of our
method.

as parts of whole objects, but our saliency detector based on
the part-object relationships detects the whole object instead.
For those images in the right two columns of Fig. 17, the
salient objects have poor objectness, which is a challenge for
our method. In the future, we will study the relationships
between the part-object relational property and saliency to
improve the robustness to the above complicated cases.

VI. CONCLUSION

In this paper, we have proposed DPORTNet for fast POR
saliency by involving the disentangled representation. Con-
cretely, DCR was proposed to disentangle vertical 1D routing
and horizontal 1D routing from the original omnidirectional
2D routing for fast POR cues exploration with network param-
eters and routing complexity reduction. Due to the lightweight
capsule routing, DCR was carried out at multiple stages to
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explore multi-scale POR cues. Furthermore, a residual learning
method is proposed to integrate contrast cues and POR cues
for saliency prediction. Experiments have demonstrated the
effectiveness and efficiency of the proposed method. In the
future, we will take a further study on more primitive dis-
entangled representation for capsule routing to explore more
discriminative POR cues.
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